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Abstract

The factorizable discretization of Sidilkover for
the compressible Euler equations previously demon-
strated for channel flows has been extended to ex-
ternal flows. The dissipation of the original scheme
has been modified to maintain stability for mod-
eratelv stretched grids. The discrete equations are
solved by svinmetric collective Gauss-Seidel relax-
ation and FAS multigrid. Unlike the carlier work.
ordering the grid vertices in the flow direction has
bheen found to be unnecessary. Solutions for esser-
tial incompressible flow (Mach 0.01) and supercrit-
ical flows have been obtained for a Karman-"Trefftz
airfoil with a conformally mapped grid. as well as
a NACA 0012 on an algebraically generated grid.
The current work demonstrates nearly O(n) con-
vergence for subsonic and slightlv transonic flows.

Introduction

In the past several years, there has been an ongo-
ing effort in the Computational Modeling and Simula-
tion Branch of NASA Langley Research Center, in col-
laboration with rescarchers at 1CASL, to develop algo-
rithms demonstrating “Textbook Multigrid Efficiency™
('I‘MF;)I' 2.3 The central theme of this effort has been
the idea of Brandt! that ideal convergence rates for the
numerical solution of partial diferential equations can be
achieved if the relaxation scheme distinguishes between
elliptic. parabolic. and hyperbolic partitions of the dif-
ferential operator. Clonstruction of an ideally converging
method requires that each of these partitions be treated
independently and optimally. To achieve this, eflorts are
being made to construct so-called “factorizable™ differ-
ence schemes for the equations of fluid dynamics. A fac-
torizable scheme is one in which the discretization cor-
rectly separates the elliptic, parabolic. and hyperbolic
partitions.

In the case of steady inviscid flow. the Fuler equations
can be considered asx a composition of two subsystems.
One subsystem corresponds to the equations governing
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entropy and vorticity advection. This subsystem is hy-
perbolic in space. The other subsystem corresponds to a
full potential operator. which is elliptic for subsonic flow
and hyperbolic for supersonic flow. For a purcly super-
sonic How, space marching is the most efficient way of
solving the Euler equations. For subsonic flow. the el-
lipticity of the full potential factor should be effectively
handled by multigrid. However multigrid is not effective
for advection operators, as the coarse grid only gives part
of the correction for certain smooth components of the
error. Existing multigrid methods for subsonic and tran-
sonic flow rely on the coarse grid to smooth the entire
system. Ax such, they are fundamentally limited by the
incHectiveness of the coarse grid in correcting the part of
the error corresponding to advection factor. This same
difficulty is true for high Revnolds number viscous Hows.

Sidilkover® has devised a Cartesian erid discretiza-
tion of the Euler equations that separates these two
subsystems.  In a previous work, Roberts, Sidilkover
and Thomas? extended this scheme in conservation form
to general body-fitted curvilinear coordinates. Solutions
to the equations were obtained using collective point
CGauss-Seidel relaxation as a smoother combined with
FAS multigrid. Results for subsonic and transonic chan-
nel Aows were presented in Ref. 3. which demonstrated
essentially grid independent convergence rates. All the
grids used for these cases were quasi-uniforni, with grid
cells of unit aspect ratio. Furthermore, the channel wall
had a continuous curvature to preclude the presence of
stagnation points. and the relaxation sweep was made in
the How direction.

i the present paper. the work of Roberts, et aldis ex-
tended to external hifting flows around airfoils with both
subcritical and supercritical freestream Mach numbers.
The presence of a stagnation point at the airfoil lead-
ing edge requires an additional dissipation term in the
momentum equation. The form of this dissipation was
presented in Ref. 3 and is found to be effective. C'ompu-
tations are shown in which an odd-even vorticity error is
propagated downstream of the airfoil. This error origi-
nates at the trailing edge of the airfoll. and causes erratic
convergence. A dissipation term to smooth this vortical
crror is added to the momentum equations.

The mathematical formulation of the scheme. which
has been presented by Sidilkover” and Roberts, et al b is
briefly recounted in the following section. Modifications
to the scheme as presented in Ref. 3 are noted. Follow-



ing that, the multigrid relaxation is described. Subsonic
channel flow results are presented to demoustrate the
second-order
for subsonic

Subsonic solutions for a INd&rman-Trefftz airfoil are used

convergence of the discretization. Results
and transonic airfoils are presented next.

to compare with an exact solution. In addition, a tran-
sonic solution for this airfoil is presented. The Narman-
Trefftz atrfoil airfoil uses a conformally-mapped grid with
unit aspect ratio cells. ‘To demonstrate the effectiveness
of the scheme when applied to a more realistic case. sub-
sonic and transonic flow around a NACA 0012 1~ also
presented. These computations are performed on a grid
generated algebraically, with moderate grid stretching,
skewness, and aspect ratio.

Mathematical Formulation

The artificial dissipation of the factorizable scheme
can be described by first. presenting the modified equa-
tion, or first differential approximation {FDA), of the
discrete scheme. This is the differential equation which
is found by expanding the difference equation in a Taylor
series about each grid vertex aud considering the lead-
ing terms of the truncation error. These terms are the
artificial dissipation of the scheme.

The starting point for the scheme s
dimensional Euler equations in non-conservation form.
Let p be the density, @ = iu + jv be the velocity, and p
be the pressure. The entropy s is defined as

-
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where py and po are a reference pressure and density,
is the ratio of the specific heats.

the two-
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respectively, and =
Then the Fuler equations may be written in the vari-
ables (s, u. v, p):

i-Vs =0, {2a)
a-Viad+ —l—Vp =0, (2b)
r
pt i+ iV = 0. (2c)

The factorizability of the scheme depends on the form
of the artificial dissipation added to this syvstem of equa-
tions.

The entropy is only weakly coupled to the momen-
tum and the pressure equations through the equation
of state (1). In fact, the entropy equation corresponds
to one of the advection factors of the Euler equations.
Therefore, it may be discretized independently of the
momentum and pressure cquations in any appropriate
way without affecting the factorizability of the scheme.
The advection operator @-V uses simple upwind differ-
encing in Eq. (2a). Let (£.1) be a general curvilinear
coordinate system and define the contravariant. compo-

nents of the velocity, ({7, 17} by the transformation

Ge ) ()= (),

(3)

In this coordinate system G5# = U'd¢ +1°0,,. The equa-
tions are discretized on a uniform grid in (£.n) space.
with a grid spacing A¢ = Anp = 1. The FDA of the
first-order upwind diflerence approximation to @-% is

” | 1.
q=av—-|C|a; - < Ve, =0, (H
and the entropy equation is discretized as
qs = 0. (5

A second-order upwind discretization of the advection
operator has also been used in Eq. (5). However, it was
shown in Ref. 3 that the use of a second-order advection
operator has an insignificant affect on the computed re-
sults,

The dissipation for the momentum and pressure equa-
tions, Eqgs. (2b) and (2¢) given in Ref. 3 isx the multidi-
6

mensional upwind dissipation of Sidilkover”. In vector

notation, this dissipation is written as
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where ¢ is the speed of sound. o, and o, are scaling
coefficients, and ( is a length scale proportional to the
grid spacing. Note that the dissipation of the momen-
tum equation is the gradient of the pressure equation
residual, and the dissipation of the pressure equation is
the divergence of the momentum equation residual. Also
note that the curl of Eq. {6) is identical to the curl of
Eq. (2b), i.e., vorticity equation of the governing Euler
equations is unaffected by the artificial dissipation. The
vorticity equation corresponds to the second advection
factor of the Luler equations.

If the advection operator. pressure gradient, and di-
vergence term in Egs. (6) and (7) are discretized us-
ing central differences, the scheme is second-order accu-
rate and factorizable. However, such a scheme is not
h-elliptic.  This lack of h-ellipticity is a result of the
central difference approximation to the advection term
in the momentum equation, Eq. (6). Sidilkover shows
that this advection operator corresponds to vorticity
advection” . Replacing this operator by the first-order
upwind approximation in Eq. (4) restores h-ellipticity
and the scheme remains factorizable, but it now becomes
only first-order accurate. Note that the pressure advec-
tion term in Eq. (7} continues to be approximated by
second-order central differences.

To obtain second-order accuracy while maintaining
h-ellipticity, the advection operator in the momentum
equation must be replaced with an upwind difference op-
erator. However, this operator also contributes to the full
potential operator. Simply replacing the central differ-
ence with an upwind difference will change the form of
the full potential operator, which we wish to avoid. To



obtain a second-order upwind advection operator with-
out. changing the full potential operator, Eq. (6) s mod-

ified to be

1 { 1
aNVIi+ -Vp+ —idxVUx (J-Vﬁ+ —V}))
P 2q r

7’(
_Z T (pt a4+ dNp) =0, ()
2pc
where ¢ = max(|ul,|e]). Because the additional term

involves the curl of the momentum equation, it is trans-
parent to irrotational disturbances. I a solution 1s a
pure potential solution, then not only is Fq.
but Eqg. (X) is satisfied as well.

(6) satisfied
identically. Because the
continuity equation (7) is unchanged. a potential solu-
tion to Eq. (6) and (7) is a solution to Eq. (8) and (7).
In other words, the modification to the momentum equa-
tion does not change the full potential operator. which
is what 1s wanted.

Expanding the additional term in Fq. (%) the principal
part of the operator is

{ 1
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(9

The first term in the square brackets mav be combined
(%) to vield the
This
The
pressure terms can be manipulated such that the remain-
ing terms in the square brackets be can be written in the
form Y1), This puts the momentum equation in the form

with the advection operator in bkq.
FDA of a second-order upwind advection operator.
second-order operator operator is denoted as quo .

T {

—V (pe?~d + a-Vp)=0.
2pc
(10)

qQuoud + VD4 - Vp

et al.? the pressure term in Eq. (9) was

ignored because the principal part of this term vanishes.

In Roberts,

i fact, if the flow is barotropic the term vanishes iden-
tically. However, failure to include this term in the con-
servative discretization gives rise to a first order error, a
point that was not recognized at the time. In the current
work these terms are included in the discretization.

Discretization
The factorizability of the FDA is a necessary condi-
tion for the factorizability of the difference scheme, but
For the difference
torizable. the difference operators muxl commute in the

it is not sufficient. scheme to be fac-

same way ax the differential op('mt()u Introducing the

difference approximations to the partial derivative oper-

ators,
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The following difference operators satisfy this condition:
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To write the complete discrete scheme, the subscript h
is used to denote a standard difference to the corre-
sponding operator. and the addition of the overbar ()

denotes the “wide™ differences given above. The second-
difference expressions may be expressed in flux form hy
taking a six-point difference centered on an edge between
two vertices, and then taking a two-pomt difference of
those expressions centered on a vertex. The subscripts ¢
and v are used to denote difference operators centered
The fully discrete

on an edge or a vertex. respectively.

scheme is then writien as

q"s=0. (11a)
1
EHYIR7 U U ) M <L
p
oml oh 2
- —V (prv u+qu)= 0. (11b)
2pc

pl Y aav"y

—{)(—V" (17~V"ﬁ+ (vf’ +\'”i')p> =0. (llc)
Details of the velocity terms in D are found in the Ref. 3.
The pressure terms 1) are evaluated using the wide
difference operators defined above.

The scaling coefficients are

1

)
max(M. M) (12)

am = max( M, M), =

where A is the local Mach number, and A, is a cutoff
Mach number to prevent division by zero. The cutofl is
chosen to be O(h). and essentially becomes active near
stagnation points. The purpose of the rescaling of the
pressure equation dissipation. a,, is 1o prevent the ellip-
tic factor in the discrete equations from becoming the
skewed Laplacian operator in the mcompressible limn.



Currently, we take A, = w]AM|. where v = 2
and AM 15 the two-point difference in Mach number
on an edge. When Ao > A it is necessary to add ad-
ditional dissipation to the advection operator q". The
form of this dissipation is a five-point pseudo-Laplacian,

- ! ol o 2y = .

dpti = = max (0, — Al T (0 + (),',) i. (13)
where J is the Jacobian of the coordinate transforma-
tion, J = rey, — yery. This operator is added to both
the entropy and the momentum equation, and is cast in
flux form in order to maintain conservation. No attempt
has been made to optimize cither the coefficient 1 or the
form of the operator d.p.

When solving for the flow around an airfoil, it has
been observed that a short-wavelength vorticity error is
generated near the trailing edge and is propagated down-
stream. This error is an odd-even error of the streamwise
velocity component in the crossflow direction. The error
persists to the outflow boundary, and can cause conver-
gence difficulties. An additional dissipative term must
be added to the momentum equation to reduce the er-
ror. Care must be taken to insure that the dissipation
does not affect the factorizability of the scheme and pre-
serves second-order accuracy.

The form of this dissipation follows from a formulation
of Giles' . who observed that V x & = V(V.a) — Vi,
The Laplacian acting on @ is dissipative. In the present
scheme. the addition of a term of this form to the mo-
mentum equation will not affect the factorizability of the
scheme. as it is transparent. to the irrotational. potential
part of the solution. This vorticity dissipation is

dyii = pi '(i‘ « Adl T < 3t (14)

where g is a dissipation coefficient, A is an undivided
difference of the velocity in a grid direction, € is the grid
spacing directed in thar direction, and 2P is the discrete
vorticity centered on an edge and computed using the
wide differences. Currently the coefficient g is taken to
be 0.1. No attempt has been made to optimize this dis-
sipation.

As written, the Eq. (11) is valid only for subsonic
Aows. This is because the pressure differences in the
artificial dissipation terms are not fully upwinded in a
supersonic zone. A simple modification to Eq. (11) can
be made by rescaling the gradients of the pressure when
the flow becomes sonic. Introducing the parameter w,
defined as

x = max{1. M?), (15)

the final form of the scheme is

q"s —d s =0, (16a)
. Len
dnoii—dgpd+dd+ V. D" 4+ =V"p
P
_ """'vﬁ (p(~2v"f'.ﬁ+ l—a-vffp) =0, (i6b)
2pc KR
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- p('g)’—’V{'- (&'-\”ﬁ'ﬁ—k —:‘— (Vf’ + Vf') p) =0. (16c)
Y =
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Because  the  difference  equations  (1Ga), (1Gb)
and (16¢), can be written as a central difference part
plus a dissipation, it is straightforward to obtain a con-
servative discretization. The conservation form of the
Euler equations are discretized using a central-difference

finite-volume approximation.

v (pity = 0, (17a)

vipid) + V"p =0. (17h)

v (pe + p)d] =0 (17¢)

where ¢ = d@-id/2 + p/(p{y — 1)) is the total energy.

The dissipative fluxes on each cell face are computed
in terms of (s.u, v, p) using the appropriate difference
operators i Eq. (16). The artificial dissipation in
Ligs. (16b) and {16¢) can be rewritten as

s =-V.D" +d,id—d.d

UUI‘

1 .
+ v [ ((-Vf'.{i-+- —lT-V?IJ)] < (IR)
2 pek

op = vh {a—”' (pm_i-vhﬁ+ % (V’J + \_’f) p)] (19)

This is a conservative form of the dissipation cast in
terms of the primitive variables. The terms inside the
square bracket in Eqs. (18) and (19) are now interpreted
as dissipative fluxes. These terms are discretized on cell
faces according to the appropriate wide or narrow dif-
ferences. The first and second-order upwind advection
operators " and qf}, and the terms v.D" in Eq. (18)
may be recast in conservation form and evaluated on
cell faces. The length scale f is evaluated on the cell face
and is taken as either k¢ or k;; is used. whichever is more
nearly aligned with the flow dircction. This assures that
the advection operator in Eq. {16b) is fully upwinded
when the flow is grid-aligned. The scaling coefficients a,,
and a,, are evaluated using the Mach number on the face.
In addition to the dissipation terms, examination of
Eqs. (16b) and (16c) shows that the pressure gradi-
ent terms are discretized using the wide stencils. The
central-difference part of the conservation equations {17)
must be corrected to account for these wide differences.
This is done by adding a term to the dissipative fluxes
for the momentum and pressure equations as follows:

5 8 — 1 (V"h - V”) P (20)
p
- ~h h .
5p(——5p—w(v -V )p. (21)

Once the dissipative fluxes (s, du, dv. dp) have been eval-
uated, they are converted to the conservation variables



by the transformation

dp —p/s 0 0 1/ ds

dpu | —pu/s p 0 ufet du

(S/)l' B _/”'/5' 0 P ('/(") v

dpr —p(ut 4+ )25 pu pr hjc? op
(22)

where /

¢ + p/p is the total enthalpy.

Solution Procedure

The solution of the discrete equations is performed us-
ing a svimmetric point collective Gauss-Seidel iteration,
which has been found to be a very effective smoother.
In the previous work? the grid vertices were ordered in
the flow direction, so that the advection factor would he
solved by marching during the forward sweep. Similarly,
m the present work the grid vertices are sorted in the
freestream direction. Lach Gauss-Seidel sweep 1s under-
relaxed with a factor of 0.7 for stability. The residuals
of the conservation equations (r,. 7. Fpe. r'p ) are com-
pited at each vertex using the discretization presented
in the previous section. These residuals are then trans-
formed to the residuals of the primitive varables by the
mverse of the transformation m kEq. (22).

At each point, the update to the =olution is given by

As r.
Au i )
= — 2
M Av r, (23)
Ap ry

[}

where M ix the matrix of coeflicients of the primitive
variables at vertex (1, J). The coefficients are found by
collecting the contributions to vertex (1, ) from the dissi-
pation terms on the four surrounding faces. Because the
entropy equation decouples from the rest of the system,
this is a block diagonal matrix where the upper block is
the upper left-hand entry, and the lower block is a 3 x 3
matrix of coefficients multiplving w, ;. ¢, ;. and p; ;. Thix
matrix is easily inverted.

The relaxation is accelerated using a standard Full-
Approximation Scheme (FAS) multigrid. A sequence of
grids G, Gr—1. ... Gy is used. where (/5 is the finest
and (/o the coarsest. Let Lk_l be the coarse grid oper-
ator. u be the vector of the conservation variables, [F_,
be the fine-to-coarse gnd restriction operator, and ]:_1
be the coarse-to-fine grid prolongation operator. If Gy is
the current solution on grid k. the residual on this grid
is vy, = fi — Litix. This is the residual of the conserva-
tion equations, not the primitive equations. This leads
to the coarse-grid equation

Li—ilihr = fomy = i v + Ly (llf—-lﬂk) .(24)

After solving the coarse-grid equation for ug_,, the fine-
grid solution is corrected by

~New

"t o g+ l,f_l (ﬂ;.-_| - lf._]fu) . {25)

10" 10
107F —10°
e | ]l -
ls mﬂ
10 10",
L - 1 =
o [ ]
o s .
10k 410
5 8 ]
3 - gﬁ 1€ rac - € ]
[ . O ey, ]
! & S B Ly(s-8y)
i o | N | — i
i 10
10507 107 10" 0
Figure 1. Convergence of lift. drag. and entropy for

chanuel flow with a 109% bump on the lower wall

Equation (24) is solved by applying the same relaxation
procedure that is used to solve the fine-grid equation.
Multigrid i1s applied recursively to the coarse-grid equa-
tion. On the coarsest grid. many relaxation sweeps are
performed to insure that the equation is solved com-
pletely. A conventional V-cycle or W-cvcle is used.

Results

To confirm the order of accuracy of the scheme, solu-
tions for the channel configuration used in Ref. 3 were
obtained for a sequence of grids starting at 7 x 3 and
ending at 769 x 257. Results are shown in Fig. 1. The
lift and drag values are the integrated forces on the lower
wall. Richardson extrapolation was used to compute the
exact lift coefficient. The L, norm of the difference be-
tween the local and freestream entropy is also shown.
[t is seen that all three quantities exlibit second-order
convergence in the grid spacing.

The first set of external flow results are for flow around
a symmetric Karman-Trefftz airfoil with a thickness ratio
of about 0.15. An O-grid wax generated using a confor-
mal mapping and is shown in Fig. 2. The radial stretch-
g factor was chosen to maintain unit cell aspect ratio,
and grid lines are orthogonal. The finest grid for all cases
1s 257 x 257 and the coarsest grid is 5 x 5. The outer
boundary is approximately 150 chord lengths from the
airfoil.

Dirichlet conditions are used at the outer boundary,
a uniform freestream being specified. No far-field vortex
correction is applied.  One-sided first-order differences
are used at the wall. The tangency condition @-n =0 is
enforced explicitly by zeroing-out the component of the
momentum equation residual in the direction normal to
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Figure 2. Conformal grid for Karman-Trefftz airfoil.

the wall.

Solutions are obtained using a FMG cycle to initial-
izc the solution. A solution is computed on the coarsest
grid and prolonged to the next grid to obtain a starting
solution for that grid. This procedure is continued re-
cursively until the finest grid is reached. On each grid,
a V(1. 1} multigrid cycle is used to solve the system. Ten
multigrid cvcles are run on each of the coarse grids, and
twenty cycles are run on the finest grid. After each sym-
metric Gauss-Seidel relaxation sweep, an additional six
streamwise sweeps are done on the wall and its neigh-
boring row of vertices.

l‘or the first case the freestream Mach number is 0.01
and the angle-of-attack is 2°. A comparison of the com-
puted surface pressure coefficient with the exact incom-
pressible solution is shown in Fig. 3. Excellent agree-
ment is seen. Convergence rates for the continuity equa-
tion residual as well as the lift and drag coefficients are
shown in Fig. 4. On the coarse grids up to the 129 x 129

grid the convergence rate is essentially independent of

the grid spacing. with an asymptotic rate of about 0.25.
This slows down considerably on the 257 x 257 grid which
has an asymptotic rate for the continuity residual of ap-
proximately 0.6 per cycle. There is some slightly erratic
hehavior in the convergence rate on the finest grid. Both
lift and drag are converged after only two to four multi-
grid cycles on each grid.

A second case for the Karman-Trefftz airfoil at the
same freestream Mach number but an angle-of-attack
of 10° is shown in Figs 5 and G. The comparison of sur-
face pressnures with exact values shows very good agree-
ment. The 65 x 65 grid solution misses the suction peak
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Figure 3. Surface (7, comparisons for a Karn
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Trefftz airfoil, M. = 0.01, o = 2°, finest grid 257 x
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Iigure 5. Surface (', comparisons for a Karman-
Trefftz airfoil. M~ = 0.01, 0 = 10°. finest grid 257 x
257 grid.

noticeably, but the two finest grid are very close to the
analytic solution. The convergence rates shown in Fig. ¢
are very similar to the previous case. The asvmptotic
rate for the continuity equation residual is about 0.35
per cycle on the coarser grids. and about 0.6 on the
finest grid. The lift is converging more slowly on the
finest grid, taking about five multigrid cycle to reach its
asvmptotic value,

A transonic case is shown next, with a freestream
Mach number of 0.7 and an angle-of-attack of 1°. The
surface (', distribution is shown in Fig. 7. showing the
upper-surface shock at approximately 30% chord. The
peak Mach number on the airfoil is approximately 1.15.
Convergence rates are shown in Fig. X and are compa-
rable to the subsonic case. The forces are converging in
about three to four cvcles on each grid.

The grid for the cases shown above is orthogonal with
unit aspect ratio cells. To ascertain how the scheme be-
haves in a more realistic case, subsonic and transonic
solutions for a NACA 0012 have been obtained on an
algebraically generated O-grid. The grid generator uses
the transfinite interpolation method of Eriksson®. The
grid near the airfoil is shown in Fig. 9. The fine-grid
dimensions are 257 x 129 with the outer boundary lo-
cated approximately 100 chords from the airfoil surface.
The grid is more skewed at the trailing edge than the
Karman-Trefftz grid, and the cell aspect ratios vary from
about 1:1 to 4:1. This grid is representative of a good-
quality O-grid for a single-element airfoil. The coarsest
grid 1s 9 x 5, and the same FMG cycle and boundary
conditions are used as for the Karman-Trefftz airfoil.

A solution for freestream Mach number of 0.01 and
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Figure 6. Convergence of residual and forces for a
Karman-Trefftz airfoil. M. = 0.01, o = 10°. finest
grid 257 x 257 grid.
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Figure 7. Surface (', comparisons for a Karman-
Trefftz airfoil, A = 0.70, a = 1°, finest grid 257 x
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Figure & Convergence of residual and forces for a
Karman-Trefftz airfoil. M. = 0.70. o = 1°, finest
grid 257 x 257 grid.

angle-of-attack of 2° is shown in Fig. 10. Convergence
rates arc shown in Fig. 11. A deterioration in the con-
vergence rates compared to the Narman-Trefftz airfoil is
observed, and the rate now appears to be slightly more
grid-dependent. This is attributed to the varying aspect
ratio of the grid cells. The asymptotic rate on the finest
grid is about 0.5 per cycle. The forces are converging in
about six to seven cycles on all grids.

The final results is for the standard test case of M =
0.80. a = 1.25°. This is a much more severe transonic
case than the one shown for the Karman-Trefftz airfoil.
The solution in Fig. 12 shows the strong suction-surface
shock at about 60% chord, and the weak pressure-surface
shock. The peak Mach number on the suction surface
is about 1.35. The convergence rates for this case are
shown in Fig. 13. The asymptotic rate for the continuity
residual is quite slow on the finest grid. although the
forces are converging in six to seven cycles.

A major part of the slowdown in the convergence rate
stems from the anisotropy of the full-potential factor in
the transonic regime. This was not as significant. as for
the Karman-Trefftz result shown in Fig. & because of the
relatively small size of the supersonic region in that case
and the lower freestreamm Mach number. Point relaxation
becomes decreasingly effective as a smoother for strongly
supercritical flows. This can be alleviated by using line
relaxation in the radial direction, which has the addi-
tional benefit of being more effective on stretched grids.

Conclusions

A factorizable discretization of the compressible Eu-
Jer equations on general curvilinear body-fitted grids has
been presented. This work is an extension of the previ-
ous results of Roberts. Sidilkover and Thomas 1o lift-

Figure 9. Algebraic grid for NACA 0012 airfoil.

ing airfoil flows. A modification of the original dissi-
pation has heen introduced to preserve the stability of
the point collective Gauss-Seidel smoother without de-
stroving the factorizability of the discretization A sig-
nificant simplification of the original scheme has been
the elimination of streamwise relaxation and replacing
it with simple lexicographic symmetric relaxation. Both
subsonic and transonic results for Karman-Trefltz and
NACA 0012 airfoils demonstrates good accuracy and
fast convergence. Nearly O(n) convergence rates for the
residual are demonstrated subsonically and for slightly
supercritical flows. The convergence for a more strongly
transonic flow is significantly slower primarily because
of the anisotropy of the differential operator in the tran-
sonic regime. The use of line relaxation should improve
this, and additionally is should be well-suited for more
severe grid stretching.
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